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INTRODUCTION

The increased demands for quick and precise control over aircraft

and space vehicle response that are anticipated in the coming decades will

have to be matched with automatic control systems that can respond

instantaneously, without moment-to-moment human guidance, anticipating

vehicle response insofar as is possible and, more importantly, continually

and automatically monitor vehicle response and re-adjust control signals

to correct for unpredicted deviations from the desired response. Such

unpredicted response variations can result from external disturbances

(e. g., wind gusts) and from the impossibility of employing a sufficiently

complex and accurate model of the vehicle's dynamics to account for every

vibrational mode, every nonlinearity,..., every variable affecting system

response.

While the state-space-based mathematical theory for controlling

systems without substantial uncertainty regarding dynamical response grew

relatively sophisticated during the two decades of the 1960's and 1970's,

there was almost no significant progress concerning the control of systems

having uncertain response since the 1940's and 1950's when great strides

were made in the development of the "classical" transfer-function-based

theory for the control of simple single-input- single-output (SISO) linear

time-invariant LTI) systems with uncertainty. Consequently, when this

research project was begun in October 1979 there was no adequate theory

to provide engineers with an efficient, systematic procedure for the design

of precision controllers for more complex multi-input-multi-output systems

such as the highly unstable, fast responding, control configured aerospace

vehicles that are expected to be operating in tomorrow's combat environment.
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The objective of the present research has been to develop this badly needed

theory so that the engineers who must design tomorrow's aerospace vehicles

will have more than intuition, trial-and-error simulation and mystical S

"seat- of- the- pants" insight for guidance in designing uncertainty- tolerant

automatic controllers for these vehicles.

BACKGROUND AND PROGRESS 10/79 - 9/82

Since work began on this project in October 1979, the research p

effort has been generally successful in achieving its main objective of

relating the return difference matrix to the uncertainty tolerance properties

of a system. These properties are also known as robustness properties or

feedback properties. Our results, together with some related results useful

in the actual synthesis of robustly uncertainty tolerant feedback controllers,

were reported in the paper "Feedback Properties of Multivariable Systems:

The Role and Use of the Return Difference Matrix" [1]. This paper

discusses the central roles in feedback theory of the return difference

matrix (denoted I+L(s)) and the inverse-return difference matrix (denoted

I+L(s)).

Among the new theoretical results in [1] are the following:

(i) A new method for exact evaluation of the sensitivity of multi-

variable feedback control systems which overcomes significant practical

limitations associated with previously known methods. Sensitivity to large

plant and sensor variations is directly related to the nominal system's IL_

return and inverse-return difference matrices. (See Theorem 2. 1 and

Theorem 2. 2 in [1]).

(ii) Significant drawbacks of characteristic locus analysis methods

2



(cf. MacFarlane and others) are described. Return and inverse-return

difference singular value plots are found to overcome some of the drawbacks

of characteristics loci. The results have been found to be useful in quanti-

fying some fundamental limits on the achievable performance of feedback

control systems. (See Section 3 and Section 4 of [1)).

(iii) A technique, based on stochastic linear quadratic Gaussian

(LOG) optimal control theory, has been developed to aid the shaping of the

return and inverse-return difference singular value plots. Though the

technique is to a certain extent a trial-and-error design technique, it

continues to be substantially more systematic than any other method that

is currently available for synthesizing multivariable control systems to meet

specifications requiring a robust tolerance of disturbances, noise and

plant/sensor modeling errors (see Section 5 in [11]). To demonstrate the

viability of the technique, the theory has been applied to the synthesis of

an automatic controller for the longitudinal dynamics of an advanced control

configured vehicle (CCV) aircraft, viz., the NASA HIMAT remotely piloted

aircraft (see Section 6 of [1]).

More recently, research effort has focused on several issues.

First, substantial effort has been focused on the important practical

issue of how to solve the so-called "Inverse Problem of Linear Quadratic

Gaussian (LQG) Optimal Control" in the general setting in which the controller

is dynamical and the plant is subject to plant and sensor noise. This inverse

problem is as follows: Given a realizable closed-loop control return-

difference matrix, the plant transfer function matrix P(s), and the plant

and sensor noise power spectra matrices, say Z (s) and £n(s), find the

linear quadratic cost matrices R(s) and Q(s) such that the closed-loop

system is optimal in the sense that the following stochastic cost is

3



minimized:

3 = .- Tr (Q(s)E (a) + R(s)E (9)) do S2,fjy u

where E (s) and E u(a) denote the respective closed-loop power spectra

matrices of the sensor output and control input signals. We are pleased

to report that the solution to the problem, together with extensive discussion

of its ramifications regarding a number of related problems is in hand (5].

This work was supported under AFOSR Grant 80-0013. S

The importance of the LOG inverse problem to the proper under-

standing of robust multivariable feedback control system design cannot be

understated. LOG multivariable feedback designs are preferred for a S

variety of reasons: Good computer software is readily available for solving

the LQG design equations (e. g., [10]), LOG designs optimize inherent trade-

offs between robustness properties such as sensitivity versus stability

margin [1], and many engineers in the aerospace industry are familiar with

the basic LQG concepts. The solution to the inverse problem plays a

vital role in our understanding of how one can use the LOG theory to place

the poles and zeros of I+L(s) in order to achieve acceptable robustness

and sensitivity singular-value Bode plots [1] and acceptable transient

response and asymptotic tracking properties [5]. Also, as it is common

practice to iteratively adjust the LOG cost matrices when "fine-tuning"

a control design to meet various robustness specifications, the solution to

the inverse problem provides a starting point for fine-tuning non-LOG

multivariable feedback designs.

A second focus of the research effort is one of rather fundamental

significance in linear feedback theory: realizability. A closed-loop

4
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feedback system's return-difference I+L(s) is said to be realizable for a

given plant P(s) if for some controller C(s)

(i) L(s) = P(s)C(s), and •

(ii) (I + L(s)) " 1 is stable, and

(iii) P(s) and C(s) are "coprime" in the sense that there are no

unstable pole-zero cancellations in the product P(s)C(s). A new simplified

realizability result (Lemma 1, [4] and [55]) has been developed which

characterizes realizability directly in terms of the poles and associated

residues of the return-difference and inverse-return difference. This is P

an improvement over previous multivariable results ([3], Lemma 3) which

require a solution of the so-called "Bezout" equation and give only limited

insight into the constraints imposed by realizability on the set of achievable S

return difference and inverse- return difference matrices.

The realizability question arose in connection with the previously

mentioned LQG inverse problem, and our new realizability result in [4]

plays a crucial role in the solution of the LQG inverse problem in [5], in

addition to laying the groundwork for the decoupled multivariable L0

optimization problem solved in [4].

The L optimization problem that naturally arises in sensitivity

and stability margin optimization has been another sign of our research

effort. With the aid of results in [1] which show that stability margin is

inversely proportional to the L norm of the inverse of the inverse-return

difference matrix I + L" (s) and the aid of our new realizability result

(Lemma I of [4]), it was shown in [4] and [55] that the problem of designing

a feedback controller to maximize stability margin (subject to decoupling

and, perhaps, asymptotic tracking constraints) is mathematically equivalent

to the minimization

5
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min x. I I jl, M)
mm ll.(s)Ix.(u)EH0  3js , (j= ..

3

subject to complex interpolation constraints of the form

x.(S.u) = w.. , (i = 1,...,n), Re(si) > 0,

where aij and wij are complex constants and H0 is the Hardy space of

stable transfer functions with the L norm,

jI x(s)l = sup (xUW) I

A simple solution to this interpolation problem requiring only the calculation

of certain eigenvectors and eigenvalues is available in the mathematics

literature [39]. This leads in turn to the multivariable feedback controller

having maximal stability robustness. It also points the way to improving

and extending to multivariable systems certain recent results of Zames and

Francis [40] concerning single-loop feedback sensitivity minimization with

respect to the LO norm. The results recently have been generalized to the

decoupled multivariable case by the principle investigator and Ph. D

student, B. S. Chen [4, 5].

PROGRESS 10/82 TO 9/83 AND CURRENT RESEARCH

During the past year our research has lead to progress in several

h. directions as reported in the thesis and seventeen new publications and

reports appended to this report.

One focus of the research effort has been on the robustness of

control systems for flexible mechanical structures, e. g., space-borne
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antennas and telescopes. References [48-51] and [53] address this problem.

Results reported therein relate the singular values of Moore's balanced

state-space realization [8] to the poles and associated damping ratios for

lightly damped large-scale-structures [49]. It has been found that for

such systems "balanced" and "modal" state-space coordinates coincide

asymptotically as the damping goes to zero [50]. Also, improved bounds

on the sensitivity of the Lyapunov equation associated with such systems

have been obtained [51, 53]. The Lyapunov equation plays a central role

in robustness and stability analysis.

The existence of solutions to the LQG (Linear Quadratic Gaussian)

optimal control problem has been re-examined from the operator theoretic

point of view [52]. Results have been obtained relating the spectra of the S.

Wiener-Hopf operator to the existence of stabilizing and antistabilizing

optimal feedbacks and to the fundamental role played by the "positivity"

of certain related operators. The new approach assumes a great deal about

the "fine" structure of the linear-quadratic problem. The results of

Safonov and Sideris [63] provide a unified view of the state-space and

Wiener-Hopf approaches to the LQG problem, showing that the LQG state-

feedback and Kalman-Bucy filter return-difference matrices generate the

plant matrix fraction description and the spectral factors of the Wiener-Hopf

solution. S

Several of our papers deal with various aspects of stability margin

or "robustness" analysis for multiloop feedback systems. Reference [55]

describes a simple method based on the Perron-Frobenius Theory of

non-negative matrices for suboptimally pre-scaling matrices before

computing robustness singular values. References [58] and [65] show

that with additional computational effort, optimal prescaling can be

7



accomplished by gradient descent methods and that cy a (DMD" ) is
max

convex in the diagonal scaling matrix D.

Solutions to the problem of synthesizing an output feedback control

law to achieve L -norm optimal robustness singular values (and/or

sensitivity singular values) are obtained in [4], [54], [57] and [66]. We

treated the case involving a closed-loop decoupling constraint in [4] and

[54]. The unconstrained case is treated in [57] and [66] by establishing

an equivalence with the so-called "zeroth order" optimal Hankel-norm model

reduction problem which can be solved in the state-space using the techniques

developed by Bettayeb, Silverman, and Safonov [1Z, 13] and improved by

Glover et al. [68]. The very recent work of Doyle [69] interfaces with the

results of (57, 66, 68] to provide a complete state-space oriented framework p

for solving the Lco singular value optimization problem. The paper by

Safonov [59] gives a brief overview of the state-of-the-art in Lo optimization

with a comprehensive discussion of the role, use and limitations of the P

theory for robust control system design. The paper [65] by Safonov

clarifies some common misunderstandings about the role of singular values.

We believe that the L singular value approach to feedback control law

synthesis has much to commend it in that it provides a direct method for

optimizing and shaping singular-value Bode plots. However, singular values

have been found to be very conservative measures of performance in many

situations. Our current research effort is directed in part toward the

problem of expanding the class of problems that the L theory can handle

to include less conservative performance measures than singular values,

The design methodology we describe in [59] is a step in this direction.

We have obtained significant new results concerning the stability of

nonlinear feedback systems having hysteresis nonlinearities. The results

of Safonov and Karimlou [60, 62] and the results in the Ph.D. thesis of

8



Karlmlou [67] enable one to treat a broad class of hysteresis nonlinearities

as if they were conic-sector bounded, even when the hysteresis includes

the origin.

A fundamental role in robustness theory is played by the "conic

sector. " Indeed, the singular-value may be viewed as simply a method for

verifying whether a given transfer-function matrix satisfies a conic sector

condition. Of course, conic sectors are much more general in that they may

be used for nonlinear and time-varying systems in addition to transfer

functions. The paper [56] by Safonov on "Propagation of Conic Model

Uncertainty" is of fundamental significance. It shows that simple operations

such as feedback, input projection, output projection, and feedforward map

conic sectors into and onto new conic sectors whose cone-parameters can

be precisely calculated. The result enables hierarchical decomposition of

robustness analysis and robust control law synthesis problems involving

uncertain large scale systems.

9
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